RESOURCE GUIDE:

•Start Resource and load the *.RS file of your choice. If you script a startup for Resource, you can specify a work directory or an assign, which it will use when you select a file to load - saves looking around for it all the time. eg. Resource RS_WORK: will use whatever's currently assigned to RS_WORK:.

•The current line in Resource is always the one at the top of the screen. Everything you do operates on that line except for a few block operations (which you really don't want to know about yet).

•[up arrow] and [down arrow] move up and down one line at a time.

•[shift]+[up arrow] and [shift]+[down arrow] move up and down approximately one screen at a time.

•[ctrl]+[shift]+[up arrow] and [ctrl]+[shift]+[down arrow] move to the previous and next label respectively.

•[alt]+[up arrow] and [alt]+[down arrow] move to start and end respectively. Note that this cursor movement will wreck any remembered positions (see below).

•[right arrow] - forward reference - If you're positioned over a line containing a label as an operand, takes you to that label and REMEMBERS "WHERE YOU CAME FROM". You can now move around in the code and see what's there without affecting "where you came from". However, DO NOT use any absolute cursor positioning (start, end, go to offset, etc.) or you will lose "where you came from"!

•[left arrow] - previous location - if you've used a few of the [right arrow] moves, this will take you back one step at a time. I don't know what the limit is, but I've never run out yet. If you want to get fancy about it, you can also manipulate the stack it uses for this!

•[shift]+[right arrow] moves one byte forwards. This may seem silly in the resulting assembler code but it's essential for getting rid of a left over label that's pointing to the middle of an instruction! Also brilliant for moving through multiple constants on a line to insert a label at exactly the right spot (for example, labelling the $4A byte in the middle of a line like dc.b $01,$02,$03,$4A,$30) and for tidying up text with embedded non-printing characters (all those scroll strings with $FC line terminators and the final $FF scroll terminator).

•[shift]+[left arrow] moves one byte backwards.

•You can change the type for a line using [left Amiga]+

 [C] = Code

 [B] = Byte

 [W] = Word

 [Z] = Long

 [A] = ASCII (text)

Take great care doing this as Resource will ripple that change through until it finds its next "certain" data type. This will usually be a label. So this is one of those occasions where a single keystroke can wreck everything... For example, you find a few bytes of data at the start of some code, so you use [left Amiga]+[B] and the whole lot changes to byte data from there on. Now try finding where that code started again >:(

Note that this doesn't happen if you've already told Resource what some of the code is by inserting labels or one of the other data type changes.

•When you enter the string or pattern for a search, you MUST hit [Enter] before you try the search. This is a big gotcha in Resource!

•[F9] repeats the last normal search. [ctrl]+[F9] repeats the last patterns search. These do not affect the "repeat last command" operation.

•Whilst on searching, this is a big file and it takes a long time to search from start to end. As only the roughly first 15% of the executable is actual code, it's a pain to have to sit waiting for it to finish when you know what you were looking for was in the code bit. Just use [right Amiga]+[A] to abort any long running process.

•So you've found a position in the code that you want to label. Resource may already have put on there in the lbXnnnnnn format. Just press [numeric keyboard 9] to get a requester where you can type in your own. Must start with an alpha or underscore, can contain alphanumerics, dot and undersore. As soon as you define it, all references to it will change to the new name. Piece of cake!

•If you want to change a symbol, use [v]. Note that on lines where there is potential for more than one symbol in the operands, use [1], [2], etc. first to tell Resource which one to change. As you discover more about the data structures used in Bloodwych, you may want to have some sets of symbols already defined, so you can tidy up references like ($000A,a4).
Look at Help for SYM/Custom Bases for a couple of sets you can define that also get saved with the *.RS file. If you start finding many of them, let me know and I'll assemble up the Resource Symbol files for them. But we'll go into that when you get there...

•[spacebar] repeats the last instruction. This does not include any of the variations on repeat searches or most cursor movements, so you can repeatedly search and repeat with just two key presses.

•Don't forget that all those labels generated by Resource itself represent offsets from the start of the code, not addresses! For Bloodwych, you need to add $3A4 bytes to get the absolute address (see the comments at the start of the source for why). These are offsets from the start of the code, not the start of the file. For file offsets, add $20 bytes. This is the size of the first hunk plus the size of the header for the second hunk.

•There are a lot of word-length references to absolute addresses. Resource cannot resolve these as it expects address references to be longword-length. To get the offset in the file, subtract $3A4.

Worked Example:

 00D4AC jsr ($41FA).w

$41FA-$3A4=$3E56

Now go to offset $003E56 and create a label [F9]. If you're not sure what the destination is, make it the same as one Resource would use to avoid any more confusion! Eg. lbC003E56.

Go back to offset $00D4AC and create a symbol [v]. The trick is to create the symbol with .w on the end. So, in this case, you'd enter lbC003E56.w. It now looks like this:

00D4AC jsr (lbC003E56.w).w

Resource will now recognise the reference and you can use the forward reference and previous location functions as with any longword symbol.

•For all those absolute addresses to resolve correctly, I've set the Origin as $3A4. Make sure you don't change this if you're messing around trying out different commands!

•The Resource manual is very useful. The pirate docs with some versions have some useful info but are way out of date. The best source is the built-in Help. But it's a real pain to use as you have to know what you're looking for before you can find help on it (if you see what I mean - ever read a mobile 'phone manual if you've never had a mobile 'phone before?). I've had a side project going for a while to turn the Resource Help (V6.06) into a PDF with all the hyperlinks in place.
Page 3 of 3

